
1

Scala Project
Maintenance
Survey R E P O R T

V I R T U S L A B . C O M

http://virtuslab.com/
http://virtuslab.com/
http://virtuslab.com

2

VirtusLab conducted a Scala
Project Maintenance Survey
in late autumn of 2024 and
collected 232 complete
responses.

The survey consisted of 37 questions, some of which
were asked conditionally based on the previous
responses. Multiple questions allowed unstructured
input from survey takers if none of the provided answers
were a fit. There were 9 free-form questions in total.

The respondents were reached through social media
like X, LinkedIn and Mastodon, chats like community
Discord servers, and on r/scala Reddit.

http://virtuslab.com/

3

Table of contents

Respondents and their projects

General ecosystem insights

Difficulties related to Scala and its ecosystem

Hiring and training issues

Future perspectives

Key challenges

Solution proposals

4

7

15

23

25

27

28

http://virtuslab.com/

4

PROFESSIONAL POSITIONS
HELD BY RESPONDENTS

Respondents and their
projects

PROJECT TYPE:
PROPRIETARY VS OPEN SOURCE

One of the foundational aspects of the survey focused on the nature of the
respondents’ projects. The vast majority, 87.5% (203 respondents), reported working
on proprietary projects. Conversely, 18.1% (42 respondents) contributed to open-
source Scala initiatives. This, in turn, means that 5.6% of projects are simultaneously
proprietary and open-source as this was an available answer to this question.

Software Engineers:

Constituting the majority,
75% (174 respondents)
identified themselves as
software engineers.

Tech Leadership Roles:

Approximately 49.6%
(115 respondents) held
senior technical positions
such as tech leads, principal
engineers, architects, or
other leadership roles.

Engineering Managers:

A smaller segment,
8.2% (19 respondents), were
engineering managers,
reflecting a managerial
perspective within the
survey.

Respondents represented a diverse range of roles within their organizations and the
Scala community. Multiple options were allowed to be selected to reflect the reality of
workplace role assignment. The breakdown of professional roles is as follows:

http://virtuslab.com/

5

GENERAL SATISFACTION WITH SCALA

Respondents provided feedback
on their satisfaction with Scala:

ب	 Yes: 49.1%

ب	 Rather Yes: 44%

ب	 Rather No: 6%

ب	 No: 0.9%

This result is significant as it highlights the generally positive sentiment toward

Scala. As the most popular functional programming language, its core value

proposition - the ability to express complex ideas succinctly and robustly - remains a

key factor in its appeal to software engineers.

The survey identified challenges that need to be addressed, and this is where we

(VirtusLab) focus our efforts with collaborations with other organisations as a part

of Scala Governance: EPFL, Akka, and Scala Center. We list concrete actions at the

end of the document.

http://virtuslab.com/

6

DURATION OF PROJECT INVOLVEMENT

The survey explored respondents’ tenure with their projects, capturing the varying
levels of experience and engagement. As visualized in the accompanying chart, the
majority of respondents reported between 1 and 5 years of project involvement,
accounting for nearly 70% of responses. Beyond the 5-year mark, the number of
contributors gradually declines, reflecting a smaller group of long-term participants
who have been engaged for up to 17 years.

Based on the data gathered by the question

on hiring markets, we can infer some insights

regarding the survey’s reach. Europe dominated

the participation, accounting for 69.84% of

respondents who shared their hiring market

information. The only other significantly

represented region was North America with 17.46%

of respondents hiring there. Unfortunately, other

regions were represented by very small samples

(below 3 hits).

A NOTE ON THE GEOGRAPHICAL
REACH OF THE SURVEY

http://virtuslab.com/

7

General ecosystem insights

This section provides an overview of the broader Scala ecosystem based on
the survey results. It examines project characteristics, technology usage,
and the challenges faced by teams adopting Scala.

AGES OF PROJECTS

The survey revealed a wide range of project ages, with the average project being
7 years old and the median age at 6 years. The chart accompanying this section
illustrates an observable decline in the number of new projects compared to six
years ago. Specifically, one-year-old projects are only 25% as numerous as the peak
value recorded six years ago, and two-year-old projects account for 41% of the same
benchmark. This decline suggests a reduced rate of new projects adopting Scala, an
issue that will be addressed further in the report.

Additional analysis between the age of projects and the primary version of Scala used
showed that it’s mostly the newer projects that are embracing Scala 3. Scala 2.13 is the
most common version in all project age groups with the exception of the youngest
projects between a year and three years old where Scala 3 is the clear winner.

http://virtuslab.com/

8

TECHNOLOGICAL HOMOGENEITY VS. HETEROGENEITY

Respondents indicated whether their projects mix multiple Scala ecosystems or
adhere to a single one:

This data highlights the diversity of
approaches within the Scala community, with
a significant proportion of projects integrating
multiple ecosystems. A corollary of this metric is
the significance of integration layer libraries and
increased brittleness in the dependency layer
introduced by these kinds of artifacts.

Mix Ecosystems:

53% of respondents
combine multiple
ecosystems (e.g., using both
Akka-related and Cats-
related libraries).

Single Ecosystem:

36.2% of respondents stick
to a single ecosystem (e.g.,
ZIO-based projects).

No Ecosystems:

10.8% of respondents rely
solely on the standard
library or proprietary
frameworks.

http://virtuslab.com/

9

DOMINATING TECHNOLOGIES

Scala projects incorporate a wide palette of technologies, while Scala itself is used
mostly on the backend.

Ecosystems:

Typelevel libraries (41.8%) and Akka (35.3%) are among the most prominent, with ZIO
(23.3%) and Play (15.5%) also frequently adopted. Spark was mentioned to be used in
7.7% of projects.

Queues:

Kafka is widely used (38.4%), with limited use of Pulsar (<1%) and ActiveMQ (1%).

Cloud Providers:

AWS (20.2%) is the most commonly used, followed by GCP (3.9%) and Azure (2.6%).

http://virtuslab.com/

10

Databases:

PostgreSQL (30.2%) is the most popular, followed by Redis (18.5%), MySQL (10.8%),
MongoDB (8.6%), Elasticsearch (8.2%) and Cassandra (7.7%). DB2 and Microsoft
SQLServer were mentioned in less than one percent of projects.

Platforms:

The JVM is overwhelmingly dominant (90.5% of projects), with a smaller subset using
Scala.js (3.4%) and a single mention of Android. The remaining responses did not contain
information about the target platform.

http://virtuslab.com/

11

Scala 3 migration in commercial projects is making some progress, with 22.4% of
purely commercial projects (not marked as simultaneously being open source) using
it as the most common version of the language.

On the other hand, 37% of respondents reported no plans to migrate at all. Key
reasons provided, sorted by prevalence, include:

This metric is quite grim as it reflects the reality of breaking changes percolating
throughout the ecosystem and has to be addressed where possible by organisations
as a part of Scala Governance: Akka, EPFL, Scala Center and VirtusLab. We, VirtusLab
Scala team will propose solutions to alleviate these issues further in the report.

ب	 Scala 2.13:

ب	 Scala 3.x:

ب	 Scala 2.12:

ب	 Scala 2.11:

55.2% of projects

29.3% of projects

12.5% of projects

3% of projects

SCALA VERSIONS AND MIGRATION CHALLENGES

The survey highlighted the versions of Scala currently in use in commercial settings:

ب	 Tooling and ecosystem readiness
concerns

ب	 Lack of perceived business value of
migration

ب	 Resource constraints

ب	 Preference for other languages

ب	 Distrust or concerns about Scala 3
priorities

ب	 Technical challenges

http://virtuslab.com/

12

Comprehensive workshop:

We help your team understand
potential migration challenges and
showcase Scala 3’s capabilities in a 2–3
hour workshop.

In-depth codebase analysis:

Our experts assess your codebase to
identify issues and provide a tailored
migration plan.

Visit our Scala migration
page and learn more about
how to elevate your projects.

Efficiently navigate the migration to Scala 3 with VirtusLab’s
free support for your Scala projects and products.

Ongoing mentorship:

We guide you through code reviews,
pair programming, and workshops to
ensure a seamless migration.

Library migration support:

We assist in updating essential
libraries to Scala 3 or offer effective
workarounds when necessary.

Complete codebase migration:

For smaller projects, we handle the
entire migration; for larger ones, we
tackle complex areas and mentor your
team through the rest.

Go to offer

Scala
migration S E R V I C E S

http://virtuslab.com/
https://lp.virtuslab.com/landings/free-support-for-scala-3-migration-and-adoption-2/?utm_source=report&utm_medium=lp&utm_campaign=support-scala-3

13

REPOSITORY STRUCTURES, BUILD TOOLS AND IDEs

The survey explored repository structures and build tools:

Repository structure:

65.5% of projects use
separate repositories,
while 34.5% adopt a
monorepo approach.

Build tools:

sbt remains the most commonly used (87.5%), followed by: Scala-CLI (11.2%), Bazel
(7.8%), Maven (7.3%), Gradle (4.7%) and Mill (4.7%).

An interesting fact is that out of all monorepo-based projects 78.8% are using sbt
and only 17.5% of them are using Bazel.

Notable mentions include proprietary build tools, bleep, and npm for Scala.js projects.

http://virtuslab.com/

14

IDEs:

Intellij IDEA with Scala
Plugin remains the top
choice, with 61% of projects
using it exclusively and 83%
of projects having it as a
popular developer choice.

Metals are popular in
25% of projects, but only
8% of projects use them
exclusively.

Raw text editors (without
IDE features) are a niche
option that’s popular in less
than 2% of projects and used
exclusively in less than 1%.

TEAM SIZES AND SENIORITY COMPOSITION

The survey captured detailed insights into team sizes and their seniority composition:

http://virtuslab.com/

15

Difficulties related to Scala
and its ecosystem

COMPLEXITY OF SCALA IN THE WILD

The survey examined how different approaches to using Scala influence project
complexity. Respondents provided the following breakdown of Scala usage styles:

Functional Scala:

The most popular approach, adopted
by 38.8% of respondents, focuses on
functional programming principles
and libraries.

Regular Scala:

Used by 34.9% of respondents, this style
retains a similarity to how the Scala
compiler is written and to techniques
pervasive in Play! / Akka ecosystems.

Highly generic Scala:

Employed by 19.4% of respondents,
this style leverages advanced type
system features, generic programming
capabilities and/or metaprogramming.

Pythonish or Javaish Scala:

The least popular approach, adopted
by only 6.9% of respondents, involves
writing Scala in a manner akin to Python
or Java, often emphasizing simplicity over
idiomatic use.

http://virtuslab.com/

16

IMPACT OF SCALA’S COMPLEXITY ON PRODUCTIVITY

Overall, 80.2% of developers reported being satisfied with how Scala is used in their
projects (specifically: that the selected Scala style does not impact their productivity
negatively). However, several areas of concern emerged among the remaining 19.8%
of engineers:

Unnecessary complexity:

10.3% of developers indicated that Scala introduces unnecessary complexity in their
projects, an issue that requires further attention.

Code fragility:

Only 1.7% of respondents believed that their Scala usage causes unnecessary
breakage, suggesting that codebase fragility is not a widespread concern.

Negative productivity impact:

Approximately 7.8% of respondents highlighted specific reasons for Scala’s negative
impact on productivity. These reasons can be grouped into the following categories:

Technical challenges:

•	 Long compilation times and high memory usage.

•	 Hard-to-predict performance impacts when targeting Scala Native or
Scala.js.

•	 Insufficient IDE support for Scala 3.

•	 Difficult tooling setup, especially in enterprise environments.

Framework and ecosystem fragmentation issues:

•	 Interoperability challenges between frameworks like ZIO and Akka, lead
to the need to choose between incomplete or overly complex solutions.

•	 Unnecessary migrations between ecosystems (e.g., Akka → Monix → Cats
→ ZIO).

Code complexity:

•	 Overengineering with type classes, complex abstractions, and
unnecessary monadic transformations.

•	 Legacy code is often simpler and more productive than newer, overly
abstract patterns.

•	 Some parts of “functional Scala” are viewed as unnecessarily complex
and counterproductive.

•	 Flexibility in Scala allows for novelty-driven over-complication by some
developers.

1

3

2

http://virtuslab.com/

17

4

5

Developer Experience:

•	 The “cake pattern” in early implementations slowed productivity
significantly.

•	 Lack of cohesion in development styles, with preferences ranging from
concrete IO to tagless final.

Scala 3 migration:

•	 Challenges in migrating to Scala 3, sometimes requiring full rewrites.

Some of these issues reflect high innovation rate in Scala’s ecosystem and are a
testament to users’ search for best techniques, while others are strictly related to
target platforms of the language. Unfortunately, none of these issues are easy to
fix as they are deeply ingrained into the existing code written in Scala. On the other
hand, most of these issues can be addressed going forward, and some propositions
will be offered in subsequent sections of the report.

BIGGEST TIME SINKS AND HINDRANCES
IN SCALA DEVELOPMENT

Respondents identified several major time sinks and productivity hindrances:

State of the ecosystem:

•	 Libraries becoming unmaintained and causing friction in dependency
updates: 44% of responses.

•	 Custom or poorly maintained internal frameworks blocking updates of
business components: 33.6% of responses.

•	 Libraries causing binary compatibility issues at runtime: 21.6% of responses.

•	 Lack of libraries to solve specific problems: 15.1% of responses.

•	 Poor integrations or lack of integrations between libraries: 11.6% of
responses.

•	 Poor quality of libraries: 3.4% of responses.

Migration challenges:

•	 Language version migration is difficult because of missing
cross-compiled libraries: 26.3% of responses.

•	 Language version migration is difficult because of breakage in code:
24.6% of responses.

1

2

http://virtuslab.com/

18

3 Documentation issues:

•	 Poorly documented components that require reverse engineering effort to
maintain or update: 22.8% of responses.

•	 Poor quality of language documentation and/or lack of learning resources:
10.8% of responses.

•	 Poor quality of documentation overall: 22% of responses.

Custom responses (48 free-form inputs) further highlighted some other issues such
as tooling inefficiencies (slow builds, poor IDE support, dependency management)
and language complexity (learning curve, accidental complexity, migration
struggles). These are exacerbated by team and community challenges (developer
shortage, knowledge gaps, hostility between community groups) and evolving
requirements in a business context.

http://virtuslab.com/

19

MAJOR BLOCKER LIBRARIES

Respondents reported a range of library-related issues, including lack of Scala 3
support, performance bottlenecks, and maintenance concerns. Key issues include:

No Scala 3 support:

•	 spark, mongo-scala-driver, mockito-scala, chisel, scala-newtype, refined
(partial support), scala-supertagged, better-monadic-for, twitter/scrooge,
elastic4s (partial support), ficus*, monix, phantom, sangria-akka-http, play-
swagger

* some of these libraries have been released for Scala 3 already

Missing/Unsupported macros:

•	 mockito-scala, refined, monocle, circe (annotations not supported), ZIO
(no mockable annotations in Scala 3), tapir, scala-pact

Library abandonment or maintenance issues:

•	 monix, phantom, sangria-akka-http, alpakka, slick, rediscala (or scala-redis),
vertx-scala, cloudflow, scala-pact, awscala, unfiltered, kamon, deadbolt

Performance issues:

•	 circe

Breaking changes/Compatibility issues:

•	 tapir (frequent API changes, binary incompatibilities), cats-effect (breaking
cross-version support), jackson-module-scala (binary compatibility
problems, frequent CVEs), elastic4s (binary compatibility issues), scala-
supertagged (runtime failures in Scala 2)

Licensing concerns:

•	 akka (aggressive licensing changes, migration to Pekko required)

Poor documentation or usability:

•	 ZIO (runtime breakages, insufficient documentation for some libraries),
shapeless (lacking documentation), fs2-grpc (confusing design choices),
ZIO Test (complex, difficult debugging for mocks) and ZIO Mock (hard to
create mocks/expectations)

Integration/Interoperability challenges:

•	 Swagger/Tapir integration with Play, ZIO interop with Cats (runtime
breakages), Solr/OpenSearch/Elasticsearch clients (issues with ZIO-HTTP
connections), scala-pact (poor Pact integration), fs2-grpc (integration
challenges)

1

3

2

4

5

6

7

8

http://virtuslab.com/

20

Compilation and tooling issues:

•	 Protocol Buffers libraries (issues with Alpine containers, incremental
compilation), sbt (lack of BOM support, deprecated custom
configuration scopes), scalafix (rules like ExplicitResultTypes and
UseNamedParameters missing in Scala 3*), shapeless (no cross-compilation
for Scala 3), avro4s (slow compilation, large class files**), quill (poor compile
times)

* both those rules are now supported
** these avro4s issues were fixed recently

Ecosystem lag:

•	 ZIO (slow maintenance for libraries like zio-schema, zio-kafka), cats-effect
(delayed ecosystem updates for Scala 3), akka (delayed update to Scala 3
locked behind new license).

9

10

COMPILE TIMES

Compile times remain a notable challenge for some teams:

Compile times are a subject of constant effort for the compiler team. New features
like build pipelining are constantly improving this area while new library design
patterns like sanely automatic derivation help to cut down inefficiencies introduced
by metaprogramming-based libraries. Less complex builds can also leverage the
bloop compile server which is capable of immense speed ups.

Local development:

36.6% of respondents reported
slow compile times impacting the
developer iteration loop.

Continuous integration:

36.2% noted slow compile times in
CI, affecting team productivity.

http://virtuslab.com/

21

MAINTENANCE MODE PROJECTS

Around 43% of respondents indicated they have projects in maintenance-only mode.
Common reasons include:

Resource constraints:

•	 Not enough qualified developers or general resources to maintain or
improve these projects.

•	 Prioritization of other critical or high-impact projects.

Stable and feature-complete:

•	 The projects reliably perform their intended functions and meet stable
requirements.

•	 They are considered “final software” or “feature-complete” with no pressing
need for updates or new features.

Lack of business value:

•	 No immediate business need for improvements or updates.

•	 Business priorities have shifted, or the projects no longer align with the
company’s strategic goals.

•	 They are often low-visibility internal tools or services with limited usage.

Changing contexts:

•	 Changes in business focus, such as a pivot to new approaches, have
deprioritized older systems.

•	 The projects may be tied to legacy technology that the company is
phasing out.

Low maintenance needs:

•	 Projects are stable, resilient, and scalable, requiring minimal upkeep.

•	 They “just work” and meet their original objectives without ongoing
intervention.

Legacy considerations:

•	 Some projects are tied to older, deprecated technology stacks but must
remain operational (e.g., for field devices or contractual obligations).

•	 Efforts to replace them have been deprioritized due to resource or
technical challenges.

1

3

2

4

5

6

Developer turnover:

•	 Departure of key champions for these projects has left them without
strong advocacy.

•	 New developers may lack the skills or preference for maintaining legacy
codebases.

7

http://virtuslab.com/

A common theme for these projects seems to be that they are either considered
legacy from a business perspective or that they “just work” and require minimal
effort to maintain. The most pressing issues mentioned relate to the availability of
developers capable of working on older code without a lengthy onboarding process.
This aligns with previous insights regarding the fractured history of styles and
approaches within the Scala ecosystem.

Scala commercial support

Build tools:

We support and improve Bazel, SBT, and
Scala CLI to ensure fast, efficient, and
reliable builds.

IDE tools:

We develop and maintain VS Code Metals
while also supporting IntelliJ IDEA with
plugin development and integrations.

Get in touch with us today, and we will
bring your projects back on track.

Rely on our expert support for the compiler and tooling to keep your Scala
projects running smoothly. Our commercial support gives you direct access
to industry hands-on experts who troubleshoot, optimize, and enhance your
developer productivity.

AI-powered tooling:

We have experience with Model Context
Protocol-capable tools like Cursor and
Cline, helping you integrate AI-driven
development workflows.

DevOps tools:

We provide expert support for Pulumi’s
Scala SDK to ensure smooth infrastructure
automation.

Scala compiler and core tools:

As Scala 3 core contributors, we offer direct
expertise in core Scala tooling like Scaladoc,
compiler enhancements, and other
core tooling, giving you the stability and
performance you need.

Address codebase complexity:

With our experience delivering solutions
to a wide range of industry challenges, we
maximize Scala’s capabilities to deliver your
project efficiently.

Get in touch with us

https://virtuslab.com/contact/?utm_source=report&utm_medium=lp&utm_campaign=scala-commercial-support

Hiring and training issues

LACK OF ENGINEERS

The lack of suitable engineers was identified as the primary challenge by 56.5% of
respondents, with an additional 8.2% noting that engineers are too expensive. Further
insights were provided by 13.8% of respondents:

HIRING MARKETS

The geographic distribution of hiring markets shows a strong concentration in Europe,
but this is likely an artifact of the survey’s reach, as it appears to have limited penetration
in regions such as the US, LATAM, or India. Additionally, it is worth noting that this
question was optional, and only 30% of respondents provided an answer. These are the
markets on which respondents’ organizations hire:

This situation leads to another significant issue – losing Scala hires poses a significant
risk for 60.3% of surveyed organizations. Together, these two factors are the largest issue
highlighted by the survey when measured by the size of consensus among respondents.

23

•	 High costs of experienced Scala developers make hiring prohibitive
for some organisations.

•	 Difficulty finding developers with Scala-specific expertise forces many
organisations to rely on training Java developers or juniors.

•	 Scala’s efficiency can reduce the need for larger teams, which might
partially explain reduced hiring in some organisations.

•	 Some respondents perceive Scala’s focus on technology over user
value as a drawback.

Beside this geographic hiring distribution, a significant 68.6% of projects have the
capability to hire for remote roles.

http://virtuslab.com/

TRAINING AND TIME TO PRODUCTIVITY

A majority (57.8%) of organizations train developers internally. Respondents reported
varying times for developers to become proficient and productive with Scala:

Notably, 40.5% of respondents believe that using Scala slows down the onboarding
process for new engineers. This highlights the need for initiatives to reduce the learning
curve for most projects, enable newcomers to grasp advanced language features more
quickly, and provide clear guidance on adopting patterns and understanding their
trade-offs. Proposals of such initiatives can be found in the last section of the report.

Scala consulting services

Use the expertise
of core Scala maintainers:

Collaborate directly with the core team
behind Scala 3 to ensure unparalleled insight
and proficiency in your projects.

Optimize your delivery processes:

Our deep understanding of Scala enables us
to refine your development processes, leading
to faster and more reliable outcomes.

Visit our Scala consulting page and learn more
about how to elevate your projects.

Address codebase complexity:

With our experience delivering solutions
to a wide range of industry challenges, we
maximize Scala’s capabilities to deliver your
project efficiently.

Tailored training and support:

We offer customized training programs and
ongoing support to ensure your team is
equipped to develop smoothly with Scala.

Go to offer

https://virtuslab.com/expertise/scala/?utm_source=report&utm_medium=lp&utm_campaign=scala-services

25

Future perspectives

CONSIDERATIONS OF MOVING AWAY FROM SCALA

A total of 23.2% of organizations reported considering moving away from Scala, within
this group the reasons are distributed as follows:

SCALA’S POPULARITY FOR NEW PROJECTS

Despite these challenges, 88.4% of respondents indicated they would still consider Scala
for new projects within their organizations. The remaining 11.6% of respondents provided
the following reasons for not choosing Scala in the future:

Hiring challenges:
11.6% of organizations cite difficulty finding skilled Scala engineers and the
general scarcity of developers as a primary reason.

Engineering issues:
5.6% of organizations are considering the move due to technical challenges
such as high-cost burden from Scala’s complexity, compiler, and library
incompatibilities, lack of commercial focus and resulting tooling issues with
IDEs and sbt.

Specific reasons (6%):

•	 Organizational alignment: Many organizations prefer languages like Java,
Python, or Go, driven by developer familiarity, existing infrastructure, and
the desire for a unified tech stack.

•	 Ecosystem and perception: Scala is sometimes viewed as a small and
unstable community with waning relevance in fields like data engineering.
Past misuses, such as creating overly complex codebases, have
contributed to lingering biases against the language.

•	 Preferred alternatives: organizations often turn to languages like Node.js
for web development, Python for generative AI, or other languages offering
superior tooling and broader community support.

Hiring challenges:
Difficulty finding experienced Scala developers in certain regions or at
competitive salaries. Developers are also migrating to other languages like
Kotlin or Go.

1

1

3

2

http://virtuslab.com/

26

Complexity and ecosystem:
Scala’s perceived complexity, compile times, JVM resource usage, and
fragmented library ecosystem contribute to hesitation in adopting it for new
projects.

Management and organizational Policies:
Scala has lost some trust among higher management due to issues like the
Scala 3 rollout. Many organizations now favor other languages like Java, Kotlin,
Go, or Rust.

Tooling and stability:
Concerns about IntelliJ IDEA’s support for Scala 3 and instability in the newer
version make some hesitant to adopt it.

Shift in language perception:
Scala’s declining popularity and focus on niche features over commercial
needs have reduced its appeal for broader adoption.

Cost vs. benefit:
Scala’s expressive type system is often seen as outweighed by higher
maintenance costs and complexity when compared to alternatives like Kotlin,
Rust or newer Java features.

Industry-specific misfit:
In certain domains, such as embedded systems, Scala is less suitable, leading
organizations to prefer other languages.

2

3

4

5

6

7

SCALA AS THE NEW COBOL?

In a lighter final segment of the survey, we asked respondents whether they saw Scala
becoming the “new COBOL” in their organizations with interpretation of what that
means left to the respondents. Encouragingly, 80.4% of respondents disagreed with this
notion. However, the remaining 19.6% who expressed concerns signal a need to address
long-term relevance and growth issues to avoid such perceptions.

http://virtuslab.com/

27

Key challenges
A strong majority of respondents (over 90%) remain satisfied with Scala, praising its
expressive power, solid JVM heritage, and the ability to write concise yet robust code.
Many teams acknowledge that once a developer becomes proficient, Scala helps reduce
the overall engineer count needed for complex work due to its higher-level abstractions.
Over 88% of respondents would still choose Scala for new projects, reflecting a lasting
confidence in its long-term viability and underscoring the language’s ongoing appeal for
both greenfield initiatives and critical production systems. Having said that - the survey
highlighted key pressing issues listed below in order of importance:

Engineer scarcity:
Scala adopters are looking almost invariably for experienced Scala developers
to work in teams filled mostly with other experienced engineers. There’s a
distinct lack of junior positions available, most probably caused by the fact that
many projects are leveraged on high-tech solutions (distributed systems, type-
level programming, pure functional programming) and the time necessary for
a new developer to be onboarded into the tech stack of a project.

Ecosystem fragmentation and library maintenance problems:
Scala’s overall ecosystem is suffering due to the unfortunate talent split
between competing ecosystems. This situation exacerbates problems caused
by the already relatively small size of the Scala community - some libraries
targeting niche problems exist only in some of the ecosystems, some general
libraries do not include an integration layer for some ecosystems. Library
abandonment is even more painful in this situation as usually, Scala libraries
have complex builds to allow cross-compilation and publication of integration
sub-libraries.

Style differences and complexity budgets:
Scala is a very powerful, elastic language and while this brings a lot of value to
experienced teams, it also makes it easier to go over the complexity budget
and therefore harder for newcomers to onboard into a project, even if they are
already familiar with Scala.

Scala 3 migration and tooling pain points:
The relatively slow adoption rate of Scala 3 in enterprise settings signals that
technical and tooling-related issues related to migration (macros, library
ecosystem issues, IDE support) are a significant burden for organizations that
adopted Scala. These problems seem to outweigh the perceived benefits of
using Scala 3. On the other hand, it should be noted that enterprises are often
sluggish to adopt new versions of technologies, even when said technologies
have met their official end-of-life deadlines and updates are not considered to
require a lot of effort. The best example here would be the sluggish adoption
of newer JVM versions as Java 8 is still used in almost 29% of all production
applications in 2024.

1

2

3

4

http://virtuslab.com/
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem#new-java-versions-being-adopted-faster
https://newrelic.com/resources/report/2024-state-of-the-java-ecosystem#new-java-versions-being-adopted-faster

28

Solution proposals

ADDRESSING ENGINEER SCARCITY

Onboarding experience:
VirtusLab will continue its work on improvement of the onboarding experience
with Scala-CLI and the official Scala language command along with
efforts related to Scala Toolkit. The goal of this initiative is to make Scala as
approachable to the newcomers as possible.

Leveraging the experience of established companies and tutors:
Organizations such as VirtusLab have successfully implemented methods to
train and grow Scala developers and established relationships with academic
communities to start the Scala training early. The Scala community should
leverage the expertise of Scala-centric companies to create scalable training
frameworks, workshops, and onboarding methodologies to address the
scarcity of experienced Scala engineers. VirtusLab offers opportunities to
bolster companies’ ranks with mixed experience levels but supervised teams,
lowering the risk profile of employee loss while simultaneously providing the
ability to quickly up-skill new junior hires. Scala already has solid materials for
learning the basics both in the form of documentation and online courses by
Martin Odersky and Scala Center. Simultaneously, tutors like Rock the JVM
have created incredibly rich offerings of courses and learning materials that
enable quick training and tackling of the learning curve.

Core libraries and library standards:
To address ecosystem fragmentation, a standard for library development
should be established. This standard will outline necessary capabilities for
libraries, such as:

•	 multi-platform support (where feasible)

•	 support and/or integration with all major Scala ecosystems along with
direct style

•	 searchable, runnable documentation with compile-verified snippets.

A curated list of libraries that meet this standard will be created, and an
upgrade path will be prepared for best-candidate libraries that do not currently
comply in domains where there’s no library that would meet the standard. The
goal here is to have at least one high-quality library for every common use case

1

1

2

ADDRESSING ECOSYSTEM FRAGMENTATION AND LIBRARY
MAINTENANCE PROBLEMS

http://virtuslab.com/
https://docs.scala-lang.org/online-courses.html

29

that can be used by any member of any community. Additionally, a continually
maintained library template will simplify compliance, providing pre-configured
CI setups, documentation scaffolding, and multi-platform publishing tools.
These measures will ensure a consistent, high-quality developer experience
across the Scala ecosystem. VirtusLab experts will also provide guidance
regarding the design of libraries in a way that makes them truly usable with all
Scala ecosystems.

Coordinate and increase efforts around the ecosystem and core libraries:
The Scala ecosystem mostly follows a decentralized model, with some more
prominent organizations like Typelevel or ZIO. On the other hand, users need
a coherent and stable set of libraries and tools. Following the core libraries
proposal, VirtusLab will establish a way for Scala developers to prioritize their
needs across the entire ecosystem and allocate resources where they are
most needed. VirtusLab teams are primarily considering extending Scaladex
to facilitate voting, communicate priorities, and visualize issues across the
ecosystem. The actual solution will be developed and communicated in the
coming months.

2

http://virtuslab.com/

30

ADDRESSING STYLE DIFFERENCES AND COMPLEXITY
BUDGETS

An official best-practice guide for Scala will be created, emphasizing when to use
advanced patterns and outlining the trade-offs associated with them. This guide will
include recommendations for specific ecosystems and feature a dual configuration of
scalafmt and scalafix to detect and manage deviations from declared complexity
budgets.

By providing clear guidelines and tools for enforcement, this initiative will help teams
maintain consistency and manage complexity effectively. Scala ecosystem maintainers
are encouraged to collaborate on this effort and to produce best-practice guides for
their respective ecosystems so that in-ecosystem consistency can be also achieved using
this centralized know-how store.

Improved IDE support:
The Core Scala Team has already tightened collaboration with IDE providers,
and we will keep up with changes to enhance the development experience,
improve release synchronization and address new feature support positioning
in roadmaps.

Free Scala 3 migration consultation:
VirtusLab offers a free Scala 3 migration consultation service that can help
companies by leveraging the skills of Scala 3 experts and compiler team
members to solve the most difficult problems introduced by migration. The
compiler team has a very good track record of enabling migrations of Scala
codebases for organizations of any size.

Migration-related articles and guides:
VirtusLab experts have consulted several migrations of large enterprise
projects and gathered a significant amount of experience in regard to
troublesome parts of the process. This experience will be shared with the larger
community in the form of long-form articles that will help tackle the difficulties
during the migration and make the process more effortless for companies
using Scala.

1

2

3

ADDRESSING SCALA 3 MIGRATION AND TOOLING PAIN POINTS

http://virtuslab.com/
https://lp.virtuslab.com/wp-content/uploads/2023/09/Scala-3-migration-offer.pdf

VirtusLab, established in 2010 and headquartered in Poland, is a global software
technology company specializing in Scala consulting, ML engineering, developer
productivity, and custom software solutions. By actively contributing to open-source
communities, including Scala, the company drives innovation, enhances developer
experience, and collaborates with enterprises in logistics, insurance, manufacturing,
and retail.

About VirtusLab

Contact Details

Let’s connect

POLAND

Kraków Headquarters

Virtus Lab Sp. z o.o.
ul. Szlak 49
31-153 Kraków

GERMANY

Berlin Office

VirtusLab GmbH
Potsdamer Platz 10
10785 Berlin

+49 30 52014256 +44 (0)20 4577 1051

UNITED KINGDOM

London Office

Virtuslab Ltd.
40 Bank Street HQ3
London E14 5NR

w w w.v i r t u s l a b . c o m

info@virtuslab.com

https://virtuslab.com/contact/
https://virtuslab.com/contact/?utm_source=report&utm_medium=lp&utm_campaign=contact-page
www.virtuslab.com

